L-Glutamate Enhances Barrier and Antioxidative Functions in Intestinal Porcine Epithelial Cells.
نویسندگان
چکیده
BACKGROUND L-Glutamate (Glu) is a major amino acid in milk and postweaning diets for mammals (including pigs and human infants). However, effects of Glu on intestinal mucosal barrier and antioxidative functions are unknown. OBJECTIVE This study tested the hypothesis that Glu may enhance the barrier function of intestinal porcine epithelial cell line 1 (IPEC-1) cells by upregulating the expression of tight junction proteins. METHODS IPEC-1 cells were cultured with or without Glu in the presence or absence of 1 mmol/L diquat (an oxidant) for indicated time points. Cell numbers, transepithelial electrical resistance (TEER), mRNA, and protein abundance of glutamate transporter, the release of lactate dehydrogenase (LDH), and the abundance of tight junction proteins were determined. RESULTS Compared with 0 mmol/L Glu, 0.5-, 1-, and 2 mmol/L Glu stimulated (P < 0.05) cell growth by 13-37% at 24 h and 12-34% at 48 h, respectively. In addition, 0.5 mmol/L Glu increased (P < 0.05) TEER (by 58% at 24 h and by 98% at 48 h, respectively). These effects of Glu were associated with increased mRNA abundance of Glu transporter solute carrier family 1 member 1 (SLC1A1) by 30-130% and protein abundance of excitatory amino acid transporter 3 (encoded by SLC1A1) by 19-34%, respectively. In a cell model of oxidative stress induced by 1 mmol/L diquat, 0.5 mmol/L Glu enhanced cell viability, TEER, and membrane integrity (as indicated by the reduced release of LDH) in IPEC-1 cells by increasing the abundance of the tight junction proteins occludin, claudin-3, zonula occludens (ZO)-2, and ZO-3. CONCLUSION These findings indicate that Glu plays an important role in mucosal barrier function by enhancing cell growth and maintaining membrane integrity in response to oxidative stress.
منابع مشابه
Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol
Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. Unlike in humans and mice, the importanc...
متن کاملSalidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملAttenuation by l-thyroxine of oxidant-induced gut epithelial damage
Objective(s): Severe injuries are often associated with tissue hypothyroidism, elevated damaging mediators in circulation, and broken gut epithelial barrier. However, the relationships between the hypothyroid state and gut epithelial damage are largely unknown. Therefore, in this study, we investigated the effects of L-thyroxine (T4) on in vitro models of intact and ...
متن کاملBacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression
Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in human...
متن کاملA Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of nutrition
دوره 145 10 شماره
صفحات -
تاریخ انتشار 2015